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Abstract—A variatioaal principle-based finite element procedure is described for solution of microstructure
boundary value problems derived in the first part of the paper in order to calculate the mixture properties
that are required in the mixture theory formulated therein. Numerical analyses are carried out for several
microstructural geometries of practical interest. For circular fibers arranged in a hexagonal array, it is found
that the coacentric circular cylinders approximation often used in practice provides a satisfactory estimate
of mixture properties. In case of rectangular fibers arranged in similar unit celis, however, the ap-
proximation is adequate for square fibers, but its accuracy decreases with increase in aspect ratio of the
unit cell. Finally, the theory is used to study dispersion of longitudinal waves in composites with several
microstructural geometries of practical interest.

INTRODUCTION

In the first part of this paper(1], a mixture theory was derived for propagation of longitudinal
waves in unidirectional composites with cylindrical fibers of arbitrary cross section. The theory
contains a number of mixture properties which are required to be evaluated from solutions of
static micro-structure boundary value problems. Analytical solution of these MBVPs is not
possible for most microstructural geometries of interest unless further approximations are
introduced. Because of this, a variational principle-based finite eilement procedure is developed
in the following sections for efficient solution of the MBVPs.

In the lowest order solution the asymptotically derived mixture theory allows axial dis-
placements in the two constituents to be independent of each other and to be functions of the
axial coordinate and time only. As a result, various stress and displacement quantities are
discontinuous across the interface and the necessary continuity is restored by requiring that the
interface conditions be satisfied by the solution composed of the two lowest order expansions.
Consequently, the MBVPs, being essentially the second order problems in the asymptotic
scheme, contain jumps across the interface in the derivatives of the field variables. It is this
feature of the MBVPs that makes them especially interesting from both analytical and
computational points of view.

In the following presentation, after a restatement of the pertinent equations from the first
part for easy reference, variational principles for the MBVPs are developed. To satisfy the
jump conditions across the interface, appropriate Larangian multipliers are introduced in the
variational principles. Consequently, the latter exhibit some resemblance to the variational
principles used in construction of hybrid finite element medels, with the notable difference that
in our formulation the Lagrangian multipliers are defined only along those inter-element
boundaries that form the interface between the fiber and the matrix.

Based on the variational principles, triangular elements are used to discretize the MBVPs.
The procedure for solution of the resulting algebraic equations is similar to the well-known
substructuring technique in that all but the interface nodal variables are first eliminated from
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the system of equations. Once the interface quantities have been calculated, the other nodal
variables are easily obtained by back-substitution.

The proposed computational scheme has been used to conduct extensive parametric studies
for microstructural geometries of practical interest. For circular fibers arranged in a hexagonal
array, it is found that the concentric circular cylinders approximation often used in practice
provides an adequate estimate of the mixture properties. For rectangular fibers arranged in a
geometrically similar array, the effect of aspect ratio of the fiber cross section is quite
important. In particular, if the aspect ratio of the fiber cross section is substantially different
from unity, the concentric circular cylinders approximation fails to be accurate and a
numerical analysis of the type envisaged here becomes essential.

As an application of the theory, dispersion of longitudinal waves is studied to delineate the
range of geometrical parameters and material properties which significantly effect the com-
posite response.

SUMMARY OF BASIC EQUATIONS

In the following development, the same notation as introduced in the first part{1] will be
utilized. All the variables are dimensionless quantities. The unit cell, bounded by a closed curve
%, contains the fiber and the matrix in the domains A" and A?, respectively, separated by the
interface #. Lower case Latin indices range from 1 to 2, (x,, x,) being the rectangular Cartesian
coordinates in the plane of the fiber cross section. As usual, repeated indices imply summation
unless noted otherwise.

The basic equations of the mixture theory for the average axial displacements in the fiber
and the matrix are the following:

(a) Conservation of average axial momentum

o’ - pus” = - P, (1a)
a§2f’—pa“”ié§2" = P, (1b)
(b) Constitutive equations
o5 = (AP + 2PN P ~ (- 1°KJ(x3, 1), )
J(x3, )= APufP ~ 2 Vuly ) 3
P =Buf” - uf?) e’ + )5 . )

The quantities K, B and y in (2)(4) are mixture properties defined in terms of the fields v,
w* and w':

A(ﬂ) .
K“‘}=—X—§’ v{rPds %)
B =W —w?) (6)
y =Bpw!-wl) M

The fields v/, w** and w'®, in turn, are solutions of the following micro-structure boundary

value problems:
(i) Plane stress MBVP

=0 on A', ®
Tg;r) = A(aiv§5)5£i+ “(a)(vg)+ Ug)), (9)
0Py =0, eyrPrPrP=0 on €, (10)

1 P=0@,  @P-rPw’+y"=0 on I an
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(i) Axial shear MBVP, |

l)a+l

#(a)w:ﬁa) = (__,‘,'GS_ on A@, (12)

wi®pP =0 on ¢ (13)

WD = e (IO By, Mg on 4 (14)

(iii) Axial shear MBVP, II

ow = (- K @1 p@y  on 4w, 1s)

WJ V; —0 on @, (16)

w=w?  on 9, an

[pa)w ﬂf!}wfl)+ (p(z) — ﬂu))”(l)] (1) 3. 0 on 4 (18)

In addition to (12)~(18), w** and w® also satisfy conditions for uniqueness:
wt=yM=0 at O€A". (19)

As has been noted in the first part, the Axial Shear MBVP I is exactly the same as the
problem encountered in a recent treatment of a similar heat conduction problem(2]. This, of
course, is the result of the analogy between anti-plane strain problems and heat conduction in a
plane. Since the MBVP for the case of thermal diffusion has been treated in detail in our earlier
work[2], only the Plane-Stress MBVP and Axial Shear MBVP 11 shall be discussed here.

VARIATIONAL PRINCIPLES

In this section, variational principles are proposed in order to develop a finite element
procedure for solution of the MBVPs for arbitrary two-dimensional cell geometry. Since it is
essential that all the interface conditions be satisfied if the effect of fiber geometry is to be
adequately modeled, modified Reissner-type variational principles are utilized. In particular, the
variational principle for the plane-stress problem allows the interfacial displacements in the two
constituents to have arbitrary variations and the Lagrangian multipliers associated with the
jump conditions for the traction vectors turn out to be the components of the average of the
interfacial traction vectors in the two constituents. A similar feature is exhibited by the
variational principle for the axial shear problem. Thus, in a sense, both the variational principles
developed here are of the “mixed” type.

Consider the functional

2
= ZIII%TS?’eSI')dA'O'i(um- v MT, ds ____f (o + @) ds 20)
o= Ale)

with the kinematic constraint

P¥P=0 on %, (1)

and

e =3 (o1 + of). @)

Then, with (9) as additional equations of definition, the condition that II, be stationary with
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respect to arbitrary variations in v{” on A’ and in T; along $ is equivalent to the problem
defined by (8)«(11). To prove this assertion, the first variation of II, is set equal to zero after
using the Gauss Theorem to obtain

2 m
8N, = - z‘ j I )60/ dA + L TS})Vi(z)avj(Z)ds"'i [_ @+ T, - %‘]5”:'(2) ds
= A(a}

H
+§ [Ts,"ué" -T- ﬂz—]au;“ ds+§ (v - o{")8T; ds = 0. (23)
K4 k4

Equation (23) implies (8), (11a) and
rPrP8®=0 on %, 24)
@), (1 y"
Ti=1ii'vi "+ "12—

p»
E= Ts‘l])l’i(n e *Jj— on 4. (25)

From (25) it is easily concluded that the interface condition (11b) is implied by the variational
principle and, in addition, the vector T; represents the average of the interfacial traction vectors
in the two constituents. To show that (10b) follows from (24), it is first noted that because of
(21), v/ is not arbitrary on € but can be written as

80,'(2) = (6,& - V,'(z)l/k(z))sﬁk on <€, (26)
where 81, is arbitrary. Thus on using (24) and (26), one obtains

P28 - vPu™=0 on ¢ Qn
Since »? is a unit vector, the two equations in (27) are linearly dependent and are equivalent to

(10b) as can be shown by writing both (27) and (10b) in extenso.
The functional appropriate for the axial shear problem (15)(18) is given by

2 {a)
=3 [ [ [ wrwe - reowe]ansd owo-words
a=1 A £
- %f, (u(l)_ ﬂ(l))v,’“)l/.‘“)(w(l)‘!' w(n) dS (28)
with the kinematic constraint (19b) and equation of definition
K{a)
fO ="+ (= DA+ p 3. (29)

It is easily shown that the condition that II; be stationary with respect to arbitrary variations in
w® on A’ and Q on # is equivalent to the problem (15)(18). Indeed,

2
8“3 — Z [ ] h‘(a)w(j}) + ( _ l)af(q)}sw(a) dA +§ u(2)wf‘_2)yi(2)8w(2) ds
a=| €
Ale)

+§ (WQ)__ w(!))sQ ds +§ [ — #(Z)W(}}Viﬂ)+ Q - %(#(’23, #u))v‘a)v;n]awtz) ds
k] s

+ i [u”’“’&"vf“’ -Q- % n®- n"’)v;‘"v:“’]SW“’ ds, (30)
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so that the equations of the Axial Shear MBVP Il are the Euler equations corresponding to
the functional I, and, in addition,

I
Q= 3 (L OwP + p PP, G1)

Thus Q is the average of the interfacial axial shear in the two constituents. The classes of
functions over which the extrema of the functionals I1, and I1; are sought should be such that
the first derivatives of the displacements are defined almost everywhere, and the Lagrangian
muitipliers T; and Q are piecewise constant on the interface. These conditions, of course,
represent the minimum degree of continuity required of the shape functions so that all the
integrals in (20) and (28) are well defined.

FINITE ELEMENT PROCEDURE

The variational principles developed in the last section can be used to obtain the discrete,
finite element analogs of the MBVPs in the usual manner. In the first step towards the
completion of this task, the closure of the domains A‘"U A@ is partitioned into closed
subdomains A{), (¢=1,... N*) where N is the number of elements in A, Similarly, the
interface $ is partitioned into one-dimensional interface elements S, (e =1,... M), M being
the total number of such elements. In fact, each of the interface elements forms the interele-
ment boundary of two elements A{Z), one each in A" and in A®, which overlap at the interface.
With this division of the domain of definition of the MBVPs into finite elements, the
discretization of the equations proceeds in the following manner.

(i) Plane stress problem
The displacement fields v/*Xr) are interpolated by the nodal values u$3;_, = v/(r;) in each
finite element A{S) where r; is the Ith node of the element. Thus

Ha @
{v,‘“’(r)}= [N,(r) 0 NAD 0 .. ] u
2,°(r) 0 N\(® 0 Nor). .. u

. Je)
=Mnf) on Af) 32

where N;(r) are interpolation functions used for discretization of the displacement fields on the
domain A{2) such that

Nilr;) =8y, r €AY (33)

Similarly, on an interface element #,,,

{o,‘*’(r)}= [ﬁ,(r) 0 N 0 .. ] ) @
v,*)(r) 0 N 0 Nor). . .1 Ja
. (e)
=M, 34

R SRR

{2}

- R-l(,);(.) ’ (35)
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where Ny(r) are shape functions for interpolation along the interface such that
Nir))=8y, 1€ Fi- (36

In (35), the quantities 1,;.;., denote the nodal values Ti(r1) of the Lagrangian multipliers 7.
Based on (22) and (32), the vector €' defined by

e = [ef, ef3, e (37)
can be written in the form
e“Ar) = Byus) (38)

where By, is a matrix whose elements are functions of the first derivatives of the interpolation
functions Ni(r). The explicit form of the matrix B, can be obtained by using the strain
displacement relations, but shall not be given here for the sake of brevity.

Once the field variables have been discretized, the functional I, can be written as

=3 [5 3 ot s+ & {0 - 58 s i

where
S = f I B(, D By, dA, (40)

Afg
n(,,=§,m M, M, ds. 1)
and
wef, i @
e

In (40), D is a 3 x 3 matrix of material constants calculated by using the constitutive relations
such that

fﬁf’)eﬁf) —_ e(a)f D(a) e(a) . (43)

Equation (39) can be used together with the usual finite element assembly process to obtain I,
in terms of global degrees of freedom. Thus,

M= 3, [§ue” 0w+ (- 1 6" i~ 36 g “

a=}

where v is the vector of global degrees of freedom corresponding to u{3), etc. and it is
assumed that during the assembly process the kinematic constraint (21) has been used to
eliminate the degrees of freedom which are constrained to be zero. In (44) the vector u®
represents the values of the displacements on the nodes lying on the interface as well as on the
domain A'. Thus, without any loss of generality, we can decompose it into the internal nodal
displacements u** and the boundary nodal displacements &',

o = { b ] (45)
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It is convenient to partition the stiffness matrix §'*) also in accordance with (45), thus

w_[SFY 8%
§ )'[ss':’ s&‘s’]' ey

The discrete analog of the Plane-Stress MBVP can be obtained by extremizing I1; with respect
to ' and t. This leads to

S{Pu*@ + 83 = 0, ()
SPuse + SPE + (- i - 38=0, )
HE- )= 0. “)

Elimination of w** from (47, 48) results in

Ga“ + (- 1)"Ht - % g=0, (50)
where
G =S8% - SFISITI'ST. (51)

If the interpolation functions are properly chosen, the matrix H is positive definite, so that from
{49) we obtain the continuity of intérface displacements,

ﬁ(Z) = ﬁ(l)_ (52)

Equation (52) is now used in (50) and t is eliminated from the two equations implied by the
latter. This procedure results in the following expression for the displacements at the interface

i =% =[GV +G6%) g (53)

Finally, substituting ¢53) into (47) the displacements at the internal nodes can be computed.
The solution of the plane stress problem can be used to determine the mixture properties K'*
defined by (5) which yields

(a) (a)
K@ = A_A_ﬁ oy ds = )‘7_ g 59

The solution can also be used to calculate the in-plane dilation which is required for solving the
Axial Shear MBVP, II. Thus, at a point r € A{S),

vfAr)= el + % = (1,1,0)B,us). (55)

A procedure similar to the one just described can also be used for the solution of the Axial
Shear Problem, II. Since the continuity requirements for the shape functions for both problems
are the same, identical interpolation functioas for discretization of the field variables can be
utilized. For this reason, only a brief outline of the computational procedure for the Axial Shear
MBVP, II shall-be given.

(ii) Axial shear problem, II
In terms of local degrees of freedom the discrete analog of the functional I1; defined by (28)
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is given by
2 Na) 1‘
=3 [3 e ke - ae"pin)
M
2{ - 1)°q&) Colisy - 2‘1(:) h(.,}] (56)
where
N N Nyy...
K = @ Nt N [ 11 21 ]
O Ve Nl Ve N a4, 7)
o= [ [ (1N da, (58)
Al
C(¢)= # ﬁrﬁds, (59)
(e)
h(')_f (“(2)_“(|7)NT ) (l)ds‘ (a))

Sy

In (56) q{3} represents the nodal values of the field w:"’, and ¥, denotes the Lagrangian
multipliers Q at the interface nodes. The matrices N and N are defined in terms of interpolation
functions, thus

N=[Nyr), NAr)...] on AQ, (61)
N=[Nir), Nir)...] on e 62)

Using the finite element assembly process after elimination of the degree of freedom con-
strained by the kinematic condition (19), we obtain the functional Il; in terms of global degrees
of freedom in the form

I, = 2 [; (a)Tx(a) (a)_q(a)rp(a) +(- l)a -(G)TC* -(a)Th] . (63)

Extremization of Il; with respect to q'* and ¥ leads to the following discrete version of the
axial shear problem:

K‘ﬂ’q“"’ + Ks;)‘-l(n) - pt(a) =0, (64)
Ksﬂl)qt(ﬂ) + Kg)“‘l(a) - i(a) + ( — l)ac* _ % h=0 , (65)
c@®-gM=o, (66)

where the partition analogous to (45) has been made for p'*. The set (64-66) can be solved by
first eliminating the internal nodal quantities q**’. The result of this procedure is

‘-lu) v [F‘" + Fa)]-l{ 2 KS"’[K"”]_' (a)} 67
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where
Fo =K§ -K$KPT 'K, (68a)
i = .+i(l)+i(2)' (68b)

Finally, (64) can be used to calculate the internal nodal quantities. Once the field w has thus
been determined it is a simple matter to calculate the mixture property y from (7) since the
averages

1

(aa) _
w _A°

f W dA (69)

Al
can be evaluated by numerical integration.

NUMERICAL RESULTS FOR MIXTURE PROPERTIES

The computational procedure described in the preceding section has been used to calculate
mixture properties for several microstructural geometries and combinations of material proper-
ties. Six node conforming triangular elements were used for discretization of the displacement
fields within each constituent, and for the interface quantities compatible quadratic inter-
polation functions were utilized.

The mixture properties K determine the mixture modulus E,, of the composite in the
direction of the fiber axis. The variation of mixture moduli for composites containing circular
fibers in a hexagonal array has been depicted in Fig. 1. This figure also shows the mixture
moduli calculated by approximating the cell by a circular cylinder. It is evident that the
approximation is very accurate and it is not necessary to numerically solve the Plane Stress
MBYVP if the only desired quantity is the mixture modulus. Some conclusion can be drawn from
Fig. 2 for composites containing rectangular fibers in a similar unit cell. Similar calculations for
different aspect ratios of the unit cell have indicated that the geometry of the fiber and the unit
cell has very little effect on mixture moduli.

In Figs. 3-6, we have shown the interaction coefficients 8 and y [see eqn 4). Again the
axisymmetric approximation is seen to be adequate for calculating these mixture properties.
For rectangular fibers arranged in similar unit cells, however, the accuracy of the approximation
is not satisfactory. This conclusion can be drawn from Figs. 7-10 which show the variation of
the interaction coeflicients for different aspect ratios of the unit cell. Moreover, if the aspect
ratio is not close to unity, it is imperative that the MBVPs be solved numerically if the analysis
is to take adequate account of the fiber and the cell geometry.

APPLICATION: DISPERSION OF LONGITUDINAL WAVES

The material properties determined for various composites have been used to study the
dispersion of time-harmonic waves for many microstructural geometries and material properties
combinations. Consider time harmonic waves of the form

U3 (x5, 1) = P et (70)

propagating in the direction of the fiber axis. If (70) is substituted into (1) and the condition for
the existence of a nontrivial solution is imposed, the following dispersion relation between the
phase velocity ¢, = w/k and frequency w can be derived:

w=o, [l ]" an

ci—cpXeli-cy)
The constants in (71) are given by

B = Bl(p""p®), (720)

et =[e+ et = V(e - ) +4cy9)2 (72b)
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Fig. 1. Mixture modulus for composites containing circular fibers in hexagonal array: finite element solution
and axisymmetric approximation.

where
Caz - [A(”) + 2/.1,(”) - (K(a) + ‘Y)A(a)]/l)(ap), (733)
C;‘ = [(K(l) + 7)(1((2) + y)A”)A(Z)]/[p("’p(w] . (73b)

A detailed discussion of the qualitative nature of the dispersion relation (71) has been given by
Hegemier et al.[3].

Using the mixture properties K, 8 and y presented in the previous section, dispersion
curves have been obtained for composites with circular fibers in hexagonal cells and with
rectangular fibers in similar rectangular cells of different slenderness ratio. In all the com-
putations the ratio of fiber and matrix densities was taken to be 1,75 (Table 1), a number typical
of many composites.

{n Figs. 11-14, the effect of changing the fiber volume fraction on the phase velocity spectra
has been shown for the same fiber and matrix material combinations. The curves show that as
the fiber volume fraction is increased, the phase velocity spectrum tends to flatten out in the
low frequency region, i.e. the composite tends to be less dispersive. This is not unexpected,
since in the limit as fiber volume fraction approaches unity, the theory should predict
noadispersive behavior.

Figures 15-18 depict the effect of changing the stiffness ratio. Again, the correct qualitative
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Fig. 2. Mixture modulus for composites containing rectangular fibers in similar unit cells (aspect ratio:
Af4y = dy/d, = 2): finite element solution and axisymmetric approximation.

Table 1. Composite parameters used for comparison with

experimental data
A. Cell Dimensions: R; = 2.722, R, = 2.0(x 10~? in)
B. Material Properties

Boron Epoxy

Volume
fraction (%) 54+ 46
Young's modulus
in fibre direction 55.0 0.73
(10% psi)
Poisson's ratio 0.20 0.31
Density R
1o-s e sec 57 »1 18

behavior is observed, inasmuch as the dispersion becomes more pronounced as the stiffness of
the fiber becomes much larger than that of the matrix. In these figures (eqns 15-18), the
dispersion curves for the hexagonal and rectangular cells have also been compared with the
phase velocity spectra obtained by using concentric circular cylinders approximation for which
the MBVPs can be solved analytically[3,4]. It can be observed that the concentric cylinders
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Fig. 3. Interaction coefficient 8 for composites containing circular fibers in hexagonal array.

approximation gives excellent agreement with the elaborate results of the mixture theory based
on the FEM analysis for hexagonal and square cells. However, for cells with slenderness ratio
different from unity, the approximation just mentioned is not adequate and, for this reason, a
computational approach to the solution of the MBVPs becomes a necessity.

COMPARISON WITH EXPERIMENTAL DATA

In order to demonstrate the efficacy of the proposed model, in this section, we compare the
mixture theory predictions on dispersion of longitudinal waves in a boron/epoxy fiber rein-
forced composite with the experimental data reported by Tauchert and Guzelsu(3). The data
was acquired by using ultrasonic techniques to measure group velocity as a function of
frequency of harmonic waves propagating in a specimen containing circular fibers arranged in a
square array.

Based on the numerical results presented in the last section which indicated that the concentric
circular cylindrical approximation is adequate for composites containing square fibers in a similar
unit cell (see Fig. 16), we use the axisymmetric approximation for the microstructural geometry
used by Tauchert and Guzelsu{3]. Using the results of a parallel study [4], wherein the details of the
solution for the concentric cylinders approximation have been presented, we have

K(a) = A(")/Eo (748)
11 2In 1
B =8z smom (2400 + 205)) (74b)

_ 0!
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Fig. 4. Interaction coefficient y for composites containing circular fibers in hexagonal array.

where

n(l)(A + “)(“_'_ n(l)(A + “)(2)+ “(2)
= n®n '

Ey (74d)

The material properties used for (74) are given in Table 1, which also shows the dimensions of the
concentric circular cylinders based on equal volume fractions.
Substitution of (70) into (1) yields the following characteristic equation:

afk¥(Cyy+ Cn+2C15) ~ (07 + p®)w’} + €k (Cii ~ EXCn— &) = (Cia+ EXCir + £)}

- €0 Hp""(Cn— &)+ p®UCy - E)}+ €' p®@ =0 as)
where
ay
Cu=n0+2u)" -2, (76a)
E,
ar
Ca =™ +20)7 -5, (76b)

§S Val. 15, No. 4—F
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| e
(2)/ th '
1.2 u/p =10
b ea
Lo
10
FEM
— — — Approx.

C!Z = EO s ga = Am')'- (76c)

From (75) phase velocity C, = (w/k) and group velocity C, = (dw/dk) are easily obtained for
each ew. In order to recover dimensional quantities, we first calculate E,,, and 5, from (65)
of [1] and obtain

Eom = V(Eimi o) = 0.4 X 10° in/sec. an

From the scaling in[1], we have

o2y =

g

]
-
e PU:

2 ~:~1—\— 27y (78a)
Cim)

As a result, dimensional frequency is obtained as follows:

y="0 .y =2339x 10°- €w cps. (78b)
‘o'!"Rz

The group velocity spectrum obtained from (75) is shown in Fig. 19 together with the
experimental data. Even though this application is only a special case of our treatment for
arbitrary fibers, the close agreement of the results of the mixture theory with the experimental
data establishes the validity of our approach.

CONCLUDING REMARKS

A computational procedure has been presented for solution of the microstructure boundary
value problems derived in the first part of the paper. The procedure can be used to calculate the
mixture properties that are required for solution of the mixture equations for longitudinal wave
propagation in fibrous composites. The technique is applicable to the composites containing
fibers of arbitrary cross section arranged in a general two-dimensional array.
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Fig. 9. Interaction coefficient 8 for composites containing rectangular fibers in similar unit cells (aspect
ratio: A,/A,=2).
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Fig. 11. Phase velocity spectrum for a composite containing circular fibers in hexagonal array-ffect of
changing the fiber volume fraction.
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Fig. 12. Phase velocity spectrum for a composite containing square fibers in square array-effect of changing
the fiber volume fraction.
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Fig. 13. Phase velocity spectrum for a composite containing rectangular fibers in similar unit cells
(A/A; = 1.5)—eflect of changing the fiber volume fraction.
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Fig. 14. Phase velocity spectrum for a composite containing rectangular fibers in similar unit cells
(A,/A; = 2)—eflect of changing the fiber volume fraction.
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Fig. 15. Phase velocity spectrum for a composite containing circular fibers in a hexagonal array—effect of
changing the stiffness ratio /A =0.7.
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Fig. 16. Phase velocity spectrum for a composite containing square fibers in a square array—effect of
changing the stiffness ratio (d,/A; = 0.7).
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Fig. 17. Phase velocity spectrum for a composite containing rectangular fibers in a similar unit cells
(A,/A; = 1.5)—effect of changing the stiffness ratio (d,/A, = 0.7).
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Fig. 18. Phase velocity spectrum for a composite containing rectangular fibers in similar unit celis
(4,/A, = 2)—effect of changing the stiffness ratio (d,/4, =0.7).
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Fig. 19. Comparison with experimental data: Group velocity vs frequency for boron/epoxy composite (sce [4]).
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Numerical results indicate that for the calculation of the mixture modulus in the direction of
the fiber axis, the shape of the fiber cross section is not very important and one can use the
concentric circular cylinders approximation without any significant loss of accuracy. For
composites containing circular fibers in a hexagonal array, the approximation is adequate
for determination of other mixture properties also. Although such a conclusion appears to be
intuitively obvious, the fact that our numerical analysis also confirms it bears out the soundness
of our approach.

For computation of interaction coefficients for composites containing noncircular fibers, the
procedure described here appears to be a necessity. However, since the technique requires the
solution of time independent problems in a two-dimensional domain, our methodology is quite
attractive from the point of view of computational efficiency.

Application of the mixture theory to dispersion of time harmonic waves indicates the range
of parameters in which it may not be appropriate to model the unit cell and fiber by concentric
circular cylinders.
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